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The combined motion of fluid and solid, fluid, or gaseous particles suspended 
in it is considered. Particles are assumed to be small and to be distributed in 

space at random, hence the Reynolds numbers of flows past particles of various 
dimensions are small, and we can neglect any random (“quasi-turbulent”) pul- 
sations of the two phases. Parameters defining phase interaction under conditions 
of unsteady nonuniform flow are calculated. 

Disperse systems consisting of a fluid and particles suspended in it may be arbi- 
trariiy separated into two categories. In “soft” systems which belong to the first 

category the particles and the fluid are in regular and defined motion; random 
pulsations of phases are weak and do not appreciably affect the system behavior, 
so that in the majority of cases these may be neglected. Systems of the second 

category (“rigid” systems) are, on the other hand, subject to intensive chaotic 

pulsation of particles and fluid, which have a decisive effect on the rheological 
properties and distinctive features of the transport process in such systems. 

A consistent hydromechanical theory of “soft” systems has been developed only 

for fairly small concentrations of the disperse system, so that we can either neg- 
lect particle interaction altogether, or make an approximate allowance for pair- 
interaction between these [l]. The theory of random quasi-turbulent motion of 
phases and of its effect on the rheology of “rigid” systems is presented in [3]. 

However the neglect in the latter of phase pulsations made it necessary to spec- 
ify a priori certain important parameters which determine the behavior of 
a disperse system. Hence tlie development of the theory for highly concentrated 
soft systems is of considerable interest, also in the analysis of processes in rigid 

disperse systems. 
The problem of constrained motion of fluid in concentrated cloud of random 

distributed particles and of resulting phase interaction was considered earlier on 

various assumpiions [4 - 63. 
A stricter treatment of the problem of steady flow through a lattice of solid 

particles was given by Tam [7] who used the approximation of “point” forces 
whereby perturbations generated by point forces applied to the fluid at the centers 
of particles are substituted for perturbations introduced in the stream by particles. 
This method, which is free of arbitrary empirical assumptions, was extended to 

unsteady flows in [8]. 
Below we formulate a method of successive approximations in which the point- 

force approximation proposed in p, 83 is taken as a reasonable “zero” approxi- 
mation, thus providing in principle the possibility of improving the accuracy of 
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results derived with the use of this approximation. Results obtained in C7, 83 are 
extended to streams of fluid which not only are unstable but also non~iform 
and the particles are not necessarily solid or stationary. 

1. B18ic rrrumptlonr rnd equation:. Let us consider the flow of fluid in 
a polydisperse cloud consisting of fine spherical particles such that the Reynolds numbers 
defining the flow past particles of various dimensions are small, and we can use the 

Stokes form of the linearized equations of ~dromechani~. 
Owing to the linearity of these equations, rhe local velocity V (t, r) and pressure 

P (t, r) of the fluid in the interstices between particles can be presented in the form 

N 

V (t, r) = V, (f, r) + 2 V (t, r; r(9)) 
j=l (1.1) 

where V, (t, r) and PO (t, r) are the velocity and pressure of the unperturbed flow, 
while I’ (t, r; r(j)) and P (t, r; r(j)) are the perturbations created by a particle with 
its center at point r(j) ,and N is the total number of particles in the system. In addition 
to (1.1) we also consider the velocity and pressure fields of the fluid perturbed by all 
particles except the j -th (1.2) 

V’j” (t, r; r(j)) = V (t, r) - V (t, r; r(j)), P’ (t, r; r(j)) 5 P (t, r) - P (t, r; r”) 

The quantities defined by (1.2). unlike those defined by (1. I), have no singularities at 
point r = r(j) (see the reasoning in n]). 

The fields defined by (1. I) and (1.2) satisfy equations 

d0 (3 iat) VO (t, r),= - VP, (t, c) + po4Vo (t, r) - V@ (t, r) (1.3) 
d, (8 / at) V (t, r; r(j)) = - VP (t, r; r(f)) + p&V (t, r, r(J)) - F(t, r; 10) 

F (t, r; r(j)) = J p (t, r) 6 (r - r(j) - a$)) da(j) 

VV,(t, r) = 0, VV (t, r; r@) = 0 

where d, and fkO are the density and viscosity of the fluid, p (f, r) is the density vec- 
tor of particle surface stress and a(j) is a vector drawn from the center of the j-th par- 

ticle to any arbitrary point of its surface. Quantities r(j) depend on time. Vector F (t, 
r; r(j)) denotes the total reaction of the fluid flowing around the j-th particle, and 
cf, (t, P) is the potential of external mass forces. Integration in (1.3) is carried out over 
the surface of the j-th particle. The equations for the summations in (1.1) and (1.2) 
follow from (1.3). 

An explicit determination of fluid motion in terms of quantities (1.1) is not only un- 
necessary but also essentially impossible, since the position of particles in the system 
is to a great extent random and unknown (regularly packed particulate layers are the 
only exception). Hence it is reasonable to follow n, 8] and consider only certain mean 
characteristics of fluid flow in particle interstices, introducing for this purpose the con- 

cept of particle ensemble constituting the cloud and, also, certain specific assumptions 
about the properties of this ensemble. 

Let us assume that the particles are statistically independent and any cross-correlation 
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between their position in space is absent, In this case the ensemble distribution function 
of N particles in terms of their radii fr(j and of radius vectors of their centers r(j) (i = 
1, 2, . . .) hi) can be represented as a simple superposition of unitary distribution func- 
tions equal for all particles. We have 

qN(t, r(l), . . ., rcN); a(t), . . ., atN)) = fl v (t, r(j), cc(j)) 
j=l 

(1.5) 

We assume for definiteness that the distribution functions appearing in (1.4) are normal- 
ized with respect to unity in regions of their respective definition. They depend on t 
as on a parameter. 

Strictly speaking, the superposition relationship (1.4) is valid only in the case of sta- 

tistically independent point-particles. Centers of particles of finite volume cannot lie 
arbitrarily close to each other, which is not allowed for in (1.4). The related error in - 
creases with increasing volume concentration p of particles in the system, and for p 
close to the concentration o, of a tightly packed system. Relationship (1.4) must be 
replaced by a more precise one which includes binary distribution functions. usual in 
statistical physics of liquids and dense gases. Binary distribution functions must, also, 
be introduced whenever there exist stable correlation links between particles of the sys- 

tem (e. g., when longlived doublets of particles are generated). Relationship (1.4) yields 
however, entirely satisfactory results for statistically independent particles up to p z 
0.5. Hence we limit our considerations to these particle concentrations and shall use for 

simplicity the relationship (1.4) without further reservations. 
In addition to these functions we can, also, introduce denumerable (numerical) and 

volume concentrations of particles by means of equality 

n (t, r) = N 
s 

cp (t, r, a) da, p (t, r) = f nN \ a3cp (t, r, a) da (1.5) 
L 

We define the operation of averaging over the ensemble of particles in the following 
manner: 

(f> = J * * * J f~,(t: I’(‘), . . ., dN!; a(‘), . . ., a(N))dr(‘). . .&(N)&(l). . .&(N) (l.(j) 

where f is an arbitrary function. Functions which are independent of r(i) and u(i) are, 

obviously, not affected by such averaging. From (1.1) and (1.2) we obtain, in partic- 

ular. 
(V) = V, (t, r) + (V (t, r; r(j))) hi, <P> = P, (t, r) + (P (t, r; r(j))) N (l.‘i) 

c,V”“) = V,+ (V(t, r; r(j))) (N - l), (P(j,‘) = P, + (P(t, r; r(j))) (N - 1) 

From (1.7) we obtain the equalities 

(V) = (V(j)‘>, (P) = (P(j)‘) (1.6) 

which are asymptotically valid for N > ‘j . 
Using operator (1.6). from (1.3) we also obtain the averaged equations 

c2, ‘(a/at) v: = - (cP> + p. :/IV> - VO - N (F: = 0, (VV> = 0 (1.9) 

The particles (if solid) are generally subject to translational and rotational motions 
about axes passing through their centers. We denote the velocity of translational motion 

of the center of the j-th particle and its angular velocity by W(i) (t) and a(j) (t) 1 
respectively. According to (1.4) and (1.6), these two quantities are not affected gy 
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the averaging over the ensemble. The translational and rotational velocities of particles 
can, also, be defined by vector function&V (t, r, a)and B (t, r, a)such that 

w (t, P, u(j)) E W(j)@), Q (t, p, ,(j)) E n(j) (t) 

However, unlike W(j)(t) and Q(j) (t) ,these vector functions are affected by the ave- 

raging over the ensemble. If there are no quasiturbulent pulsations, which were consid- 
ered in [3], or they are weak (which we assume), these functions can be considered to 

be regular. 

For the purpose of this analysis it is sufficient to consider W (t, P, a) and Q (t, r, a) 
and, also cp (t, r, a) as certain known quantities specified a priori, This is entirely 

adequate for the flow inside a cloud of particles considered in n, 81. In the general 
case these quantities represent solutions of certain equations (not considered here) which 

describe the mean motions in a soft disperse system in the approximation of interpene- 
trating and interacting continuous media. 

The order of magnitude of the space scale l of significant variation of V (t, r) and 
P (t, r) coincides with the mean distance between particle centers. The space scale 

of related magnitudes averaged over the ensemble, as well as that of r$ (t, r, a), 

W (t, r, a) and P (t, r, u) and, generally, of all parameters defining the motions of 
the disperse system phases is, however, not necessarily equal l Assuming for simplicity 
that the scale of all averaged parameters are of equal orders of magnitude and denoting 
these by L, we set 

L>l - up-” 2 a, e,=l/L<l 

This assumption implies that we can chose a small physical volume of mixture which 
would contain a number of particles sufficient for averaging over the ensemble, and 
such that all averaged parameters in this volume can be considered as virtually indepen- 

dent of coordinates. Note that the existence of such volume is a necessary condition of 
admissibility of using the methods of mechanics of continuous media for describing the 
average motions in a disperse system, when this is assumed to be a superposition of in- 

terpenetrating and interacting continua. 
The time-scale of variation of V (t, r) and P (t, r) and of related averaged magni- 

tudes are the same and are, for example, defined by the dynamics of boundary condit- 

ion variation imposed on the system. Let the order of magnitude of this scale be equal 
7. The time-scale T of significant variation of the distribution function rp (t, r, U) 

must considerably exceed ‘c, since that variation is related not to the variation of the 

local hydrodynamic pattern in the neighborhood of an arbitrary particle, but to the re- 
distribution of particles throughout the whole volume of the disperse system, i.e., in 

a volume whose order of magnitude is L. Hence we assume 

Q-z, e, =zlT<l 

For simplicity we assume henceforth that et and e+ are small magnitudes of the same 
order, i. e. , ez N e, N e. It is convenient to use parameter e in the derivation of 
asymptotic solutions of above equations. 

In a small neighborhood 1 r - rl) 1 < l of an arbitrary point r,, all parameters which 
define the average motion can be expressed by series expansions in e. We shall need in 
the following the expansion 
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w (4 r, a> = wo (4 ro, 4 + i E?W,(L, r -rO,u; rO),Wm = 0(w,)(1.10) 
??I=1 

where the summation contains coefficients of Taylor’s series. In region t - to 6 r, 

1 r - r. 1 6 1 we similarly have 
OD 

cp (t, r, a) = ‘PO (to, ro, a) + 2 arn(P, (t - to, r - ro, a; to, rO) 
m=1 

s 
‘Poda = n ‘t; ro) ) 

c , 
cp,& = 0 ( n@p ) (141) 

Expansion 

‘P, (t; r(l), . . ., rcN); u(l), . . ., uW) = 5 E?PN~,, qNO 

N 

= II 'PO@,, ro, u(j)) 
m=o j=l 

N N 

TN1 = 2 'PI (t - to, r(m) - r,, a@); t,, ro) n ‘PO (to, rol a(j)) (1.12) 
m=1 j=l,j#m 

corresponds to formula (1.11). 
If (1.12) is used for averaging a certain function f in accordance with formula (1.6), 

then the m-th term appearing in the expansion of <f) is of the order of (IQV)~, i.e., 

the subsequent terms of this expansion for IV --t 00 are not necessarily small in compari- 
son with the preceding terms. If, however, the averaged function depends on the coor- 
dinates of the particle centers and on the radii of - n (to, rO) P particles contained in 
- 1’ volume surrounding point rO , then, as can be readily shown, the m -th term is of 
the order of (sn (t,,, ro) P)m _ em, i.e., the series for (f) is an asymptotic expansion. 

2. Expansion in multipole, and the oondltion of #elf-contlrt- 
-0y. It is shown in n, 81 and, also, by the analysis given below that the flow of 
fluid in a cloud of particles is subjected to effective hydrodynamic screening of each 
particle by its closest neighbors, in the sense that the velocity of that particle and the 
velocity and pressure of the fluid around it are substantially affected only by those nei- 
ghboring particles whose distance from it is of the order of 1 N ~p-"~. Hence, by using 

for averaging over the ensemble the distribution function (1.12) and taking into consid- 
eration Sect. 1, we obtain 

<=> 

_ acv>o 
at 

a ‘. . . ’ a(% 

at 

(s s 
at V (t, r)&(l) . . . dr(%W) . . . ddN) + 

+0(E)) = (~)<v;o+wF) (2-l) 

and, similarly, 

<VP> = V <p), + 0 (a), (AV) = A(V)o+O(E) 

(VV> = v 090 + 0 04 (2.2) 
The subscript zero at angle brackets denotes here and in the following an averaging by 
function (PNO defined in (1.12). Explicit expressions for magnitudes denoted in (2.2) 
by 0 (E) are not given owing to their bulkiness. 

I_et us examine (F) appearing in (1.9). Using the definition of vector F (t, r; r(j)) 
in (1.3), we expand the delta-function in the integral into a series in powers of compo- 
nents of vector a(j). We obtain 
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F (t, r; r(i)) = ’ p (r(j) + a(j)) ?J (r - r(j) - a(j)) da(j),= s 
= S p (r(j) + a(j)) ( *iI -$ (aWjq6 (r - r(j,)) da(j) 

Altering the order of summation and integration, we obtain 

Fi (t, r; rG)> = 2 Gik...m (r(j)) _,-& . . . 
c k 

& 6 (r - r(j)) 
9=1 (2.3) 

QGik,,.,, (r(A) = +lp (r(j) + a(j)) a?) . . . a$da(j) 

where qG (r(j)) are tensors of rank ‘7. This expansion is essentially an expansion in mul- 
tipoles and analogous in its meaning to expansions in the potential theory. The first 

term (the monopole) in (2.3) defines the force applied at point r = r(j) equal in magni- 
tude to the exerted on this particle by the fluid flowing around it. The second term is 

determined by tensor ?G (r(j)) which is the point “dipole moment” of stresses distributed 

over the particle surface. The point-force approximation introduced in p, S],obviously. 
takes into account only the first term in (2.3). 

The definition of tensors 46 (r(i)) evidently implies that (q+‘C) I_ a(qC any ‘3, 

QGi.,. j . It is also clear that in accordance with Sect. 1 we have (a ,! ark) <‘JG) - I..-’ 

<qG>. This makes it possible to prove that the order of each subsequent terms with resp- 
ect to E in the expansion of (F) is by a unity higher than that of the preceding one. 
Let us prove this for the first two terms. From (2.3) we have 

(‘G (#) 6 (r - @)) = 1 IG (r(j)) 6 (r - r(j)) cp (t, r ci), e(j)) &)&i) + 0 (e) = 

= -$ ('G) +0(e) 
i ) 
’ ’ and, integrating by parts, yields 

(26 (r(j)) V6 (r - r(j))> = s 26 (r(j)) rp (t, r(i), &J) $j (r - ,(f)) dr(i)&&i) + 

+ o(E) = - (+) V PG> + 0 (E) - E ($) (‘G) 

The extension to terms of higher order is elementary. 
Thus, in accordance with (2.3) vector (F) is expressed by a series in powers of a, 

whose coefficients, determined by averaging over the ensemble (1.2) also depend on 

E, and which is a generalized series expansion, as defined by Erdklyi. Using this series 
and representing (V> and (P) in the form of series 

(V) = i Em(V)(m), (P) = 5 Em (P)(“’ (2.4) 
l%=ll m=o 

with unknown coefficients, and considering (2.1) and (2.2). in which ; V) and ( f’) are 
defined by (2.4) as generalized asymptotic expansions, we can obtain from (1.9) a sys- 
tem of successive approximation equations for determining all coefficients of series 
(2.4). We limit our analysis to the zero approximation only in which 

d, (a / at) (V)(O) = - v (Pp + poz (V)(O) - Vd) - n <‘G)f’ = 0 (2.5) 

y (v;‘o’ == 0 

where ;‘C >r’ is the principal term of the asymptotic expansion of ,‘G) . The equations 
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of subsequent approximations can be derived in a similar manner. In Eqs. (2.5) of the 
zero approximation the point-forces are of the form given in [7, 81, and are based on 

the assumptions of locally-uniform stationary ensemble of particles, as defined by the 

distribution function (1.12). 
It is expedient to use Eqs. (2.5) in a system of coordinates attached to the center of 

a certain 1 -th particle. We have 

d, (~3 / at) U(j) = - V (P)@’ _I- p,,AU” - V(l) - d, (a / at) WcJ3 - n <‘G)F’ = 0 

V U’j’ zx 0 7 U”’ = (V)‘O’ - W”‘, AU”’ G A (V)(O) (2.Q 

To simplify the subsequent analysis we apply to (2.6) the Fourier transformation and, 
as the result, obtain the following equations: 

itod,U$) = - VP, + p. AU, - VCT), - id,oW:’ - nGw = 0 

VU(j) = 0 0 (2.7) 

where o is the frequency, the subscript 0 denotes Fourier transformations of respective 

quantities and angle brackets and other subscripts at pressure and force symbols have 

been omitted for simplicity. 

Equations (2.6) and (2.7) may, in particular, be used for investigating the flow around 
the j -th particle. The effect of all remaining particles on the formation of velocity 
and pressure fields in the neighborhood of that particle, i. e., the influence of the con- 

strained flow, is taken into account by the introduction of volume force n (lG>!P (or 
of its Fourier component nG,) which defines the drag of particles in the stream of 

fluid. 
The quantity G, must, obviously, be a linear combination of linearly-independent 

vectors which define the unperturbed by the I-th particle flow at point r = r(j) (this 
follows directly from the linearity of the equations of motion). There are only two such 

vectorS ui” = (V’.V>$’ _ \@’ = (V>(J) _ w$) = u$?, AU:’ = A@ 

(relationship (1.8) has been used here; vector V (P(j)):’ = V (P>!.f is linearly depend- 
ent on U$) and AU:) which defines their relationship is determined by the equations 

of motion). Hence we can write 
G(j) = D’ (@ w , 

&)) U’” + D” ( w 
o, &)‘) AU;’ 

(2.8) 

which is a natural generalization of formulas proposed in [7, 81 for the determination 

of force. Obviously, D” N aaD’, i.e., the ratio of the second term to the first is of 

the order of Ed. Hence in Eqs. (2.7) we have to take into consideration only the first 

term of (2.8). We then have (*) 

nG, = n (D’U:“), = ~.,aU(i) + p I’ o (0 
(2.9) 

p,,a = n 
s 

D’cp, da, pJ’(j) = pod& - n 1 D' W,,y, da 

where lb’, is that defined in (1.10). Finally, substituting (2.9) into (2.7). we obtain 

*) The expressions for G$), used in fl, 81 are somewhat different. It can be shown, how- 
ever, that this difference is of a higher order with respect to E and, consequently, it is 

immaterial in the zero approximation. 
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(A - pa) U = p;lV(P + Y), VU=0 (2.10) 

p” = p;l (pOu + id,w), Y = 0 + id,oWr + rr 

The indices o and (i) have been omitted here for simplicity and Y is the effective 
potential of mass forces acting on the fluid. The first term in the expression for Y de- 
fines the external mass field and the second that of inertia forces in the chosen system 
of coordinates. The third term defines the additional field of mass forces whose prese- 

nce is due to the difference of velocities of particles of various radii and, consequently 
also to that of forces and their interaction with the fluid (particles moving relative to 

the separated one entrain also the fluid). This term is specific to polydisperse systems, 
for monodisperse systems r f 0. 

Equation (2.10) may be formally considered to be the equation defining the motion 

of certain imaginary fluid subjected throughout the space to the action of the volume 

“friction” force p&J . This motion simulates the true flow of fluid in particle inter - 

stices. In a sense it has a certain, although very superficial, similarity with the concept 
of an imaginary homogeneous medium, suggested on purely experimental considerations 

in C41. 
Equations (2.10) contain the unknown parameters CC and r which can be determined 

from the condition of the self-consistency theory of the form considered in v, 81. Nam- 

ely, by solving the problem of flow around a particle defined by Eqs. (2.10) it is easy 
to calculate the force (2.8) and thus find the expression for the coefficient D' which 
depends on CC as a parameter. Using (2.9) for calculating a, we derive an algebraic 

(transcendental) equation for the complex parameter a whose solution makes it possible 

to close completely the theory. In fact, parameter l? which remains undetermined can 

be calculated, if a ,determined by formula (2.9). is known. 

3. Calculation of the force and moment acting on L particle. 
let us consider the flow around a certain sample particle placed in a fluid containing 
other particles, on the assumption that the flow is defined by Eqs. (2.10). Let the vel- 
ocity and pressure of the stream unperturbed by that particle be U, (r)eio’ and 
P,, (r)eiol. Setting the coordinate origin at the center of the solid spherical particle, 

we obtain for the amplitude, velocity and pressure the following problem: 

(A - p”) U = p;lVR, vu=o, R=P+y (3-l) 

U=Qxr (r=~); u-+u, (r-00) 

For the flow around a liquid (gaseous) sphere we similarly have the problem 

(A - pa) U(O) = pi’ CR”‘, vu(O) = 0 R(O) = p(O) + l$fi 

(1 - 72) U(l) = P,~VR”‘, vu(l) = 0 R”’ = P(l) + Q + id,Wr 

p = id,p;lu; u(O) = I$‘), ’ (d%), = (&l)T 

(3.2) 

(r = a) 
u(O) -tu, (r-co); u(l) = 0 (1) , IF) = 0 (1) (r + 01 

The indices zero and unity relate to regions outside and inside the particle, respect- 
ively; cr is the stress tensor; n is a unit vector of the normal to the particle surface, 
and subscript ‘T denotes a tangential component of stress. 

The condition of continuity of normal stresses at the particle surface can be, also, 
readily derived. However, this condition which is necessary for determining small 
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deviations of the drop or bubble shape from spherical, is entirely immaterial in the 
solution of the hydrodynamic problem of flow around such particles. 

Let us represent U, (1) and R, (r) in the form of expansions in terms of basic vector 
functions constructed on spherical functions 

03 

U,(r) = 2 F, r s,,, + %,rVs, + H,r x Vsmr ,.. R,(r) = p. i L,,s,,, (3.3) 
m=o m=o 

We seek the solutions of problems (3.1) or (3.2) in the form of expansions similar to 
(3.3) with coefficients j:‘, &‘, /I$’ and 1;’ outside the particle and f$, ,&‘9 h,‘,” 
and 1r inside it. In these expansions Sag is a spherical function of the fi-th order 
containing Zm f 1 terms corresponding to the principal and the associated Legendre 
functions. For example, the symbol A ,S, denotes the summation 

Ams, = A$)P, + $j A:?) PE” cos m’cp + Al,ml) Phy”sin ~‘cy 
rn’=l 

and so on. The coefficients in (3.3) and in the expansions for solving (3.1) and (3.3) 
depend only on r. 

Substituting expansions (3.3) into (3. l), using Euler’s theorem on homogeneous fun- 
ctions, and taking into consideration that As,,, = --m (m + l)r-?s,,we obtain for 
the coefficients in (3.3) the system of equations 

I’,” ) ; I;‘,’ _ m (“’ ;;I’ + ’ F, _ p?-F, + 2m(;2+ ‘1 G, _ L,,’ = (‘J 

G,” + _+ G,’ - m ‘“,Ls ‘1 G, _ P2G, + ; F, - -+ L,,, I:= 0 (3.4) 

F,’ + -$ F, - ‘IL $+ *) G, = 0, 

II,” + + II,’ - 'n'm;>-- ')H,, _ f32H, = () 

(a prime denotes here differentiaition with respect to C-). The coefficients /gi’, A~!,“,‘, h% 
and 1:’ satisfy similar equations, while the coefficients jz’, 92’ , h$’ and 22) satisfy 
equations which differ from (3.4) by the substitution of 7” for p’ . 

The boundary conditions of problem (3.1) imposed for r = 0 yield the following 
relationships between the coefficients: 

f(O) + F = 0 m 111 g:’ + G, = 0, hg) + H, = - aQ& (3.5) 

From the boundary conditions of problem (3.2) we, similarly, obtain 

f2’ f F,, = fG’ = 0 g:’ + G, = g:‘, m h(“) + H = ,$‘) nz m 
g:” + G,’ = xg:” + a-l (1 - x) g;’ (3.6) 

IL:)’ + If,’ = 3Ch~)’ + u-1 (1 - x) h$ X=PL1IPo 

Equations (3.1) and (3.2) readily yield AR = 0 and AR@) = 0 (k = 0, 1) from 
which follows that I;) = (“$)rrn + rLg)r-m-‘) p” 

L, = (A!!, + Nmr-m-l) f3”, I$’ = (r&)rm -t &)r-m-1) Ts 

Substituting this and the expression for G, defined by the third of Eqs. (3.4) into the 
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The solution of this equation is the sum of p~tial and general solutions of the related 
homogeneous equation. After: calculation, we have 

P ?& = J&J, (p) -+- z&Qpn fr] - mM,r=-~=+ (m + r> N,F-2 

_E+ = ~~~~~~~~~m~ jfIZ -f- +&p= (m & 41 
where i-f,, c jg bf”f $p pacgl mr mr #St mt m - ii, c(h) and r&’ are constanta and i* tn, c, 
and M, define the fiow unperturbed by the sample particle and are specified a priori 
while the remaining constant are determined by Eqs. (3.5) or (3.6). In the definition 

of the first six coefficients S, and f& are fnnctions of fir, and in that of the last three 
they ere functions of pr-* 

The first. term in (3. S) defin@ normaf strms~b and the two Xnst owes the raqential 
stresses. Thy formulas of stre.sses in fields dlfferlng from (3, !.$ by the substjtution of 
F,,, G,,, , .f!“,,, and L,,, hr fk’, g$, I$’ aad I$,) are of a 8Imilar form. To calculate 
the forces and moments acting on the particle when Y = 0 it fs necessary to integrate 
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bn in (3.9) or r X (Tn over the particle surface, a sphere of radius a. 
Note that the terms in expressions of the kind of (3.9) are proportional to vectors 

r X V~,,vanish in the integration, while among the remaining terms in (3.9) only 
those which correspond tom =- 1 are nonzero. Thus, when considering the reaction of 

the stream on the body, it is sufficient to determine in (3.8) only the constants denoted 
by the subscript UL = 1. Constants A,, c, and Mu which define the unperturbed flow, 

can be readily expressed in terms of U, (r) and of its derivative at point r = 0. 
After calculations and certain transformations of the expressions for force F and mo- 

ment ?v! acting on a rigid particle for \I’ = 0, we obtain 

F = 6np,a (1 + E, + 1/&2) U,,(O) - 2np,a3 11 - 3K2 (ee - 1 - E)l AU, (0) (3.10) 

M = 4npoa3eE (1 + E)-’ rot u, (0) - 8vL,a3 (1 + E + l/d') (1 + 5)-Q 

g = pa 

We recall that here we consider the amplitudes of forces and moments acting on a 
particle in a harmonic stream. In an arbitrary unstable flow these are botained from 

the corresponding amplitudes defined below and by the inverse Fourier transformation. 
The total force F, exerted on a solid particle by the stream flowing around it and 

by the pressure field Y (see (2.9)) is of the form 

F, = F - 4/3 na3 (VO + id,oW $- r) (3.11) 

The second term of (3.11) represents the total Archimedean force which acts on a par- 
ticle in the “external” field with potential Y and is the resultant of forces due to the 
actual external field Q and of inertia in the chosen system of coordinates with the add- 

ition of I‘ to the mass forces, specific to polydisperse systems. 
Formulas (3.10) and (3.11) contain, as particular cases, all known formulas for F 

and M acting on a single particle in a steady or harmonic stream at low Reynolds num- 

bers. For /3 = 0 we obtain the known F axe n formula for the force in a stationary in - 

homogeneous stream, and for p =: i&o&-’ and I’, = -- W = const the known express- 

ion for the force acting on a single particle harmonically oscillating in a stationary 

fluid [9], etc. Note that besides the force defined by (3.11) the particle is subjected to 

the forces of the external mass field and of inertia. 
After calculations, for the force and the moment acting on a liquid sphere we obtain 

the expressions 

F = 6npoa [(i + E)q 4 l/,t21 U,,(O) - 2q4,a3 11 - 3F2 (et - 1 - E)ql AU,(O) 

(3.12) 

Functions L>‘,,,and on, were defined in (3.7). The formula for F in (3.12) differs from 
the corresponding formula in (3.10) only by the presence of the factor Q. The expressi- 
ons for F and $1 acting on an isolated drop are readily derived from (3.12). For exam- 
ple it is not difficult to obtain for c = q ~- 0 a generalization of the F axe n formula 
which was analyzed in [lo]. Relationship (3.11) remains valid for IT, . 

Formulas (3.10) - (3.12) completely define the forces exerted by the stream on a 
solid or liquid particle, only if u or the parameter 5 = PN which depends on ~1 and 
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appears in these formulas. Below we consider the determination of the latter parameter 
for suspensions of solid particles and emulsions of drops or bubbles. 

Let us, for simplicity, consider a monodisperse system of particles (analysis of a pol- 
ydisperse system with an arbitrary function of particle distribution with respect to their 
dimensions does not present any fundamental complications). In this case 

~,,a = nD’ (a) (3.13) 

where n is the denumerable concentration of particles. To determine E we use the 
condition of self-consistency which in accordance with (3. lo), (3.12). (3.13) and Sect, 
2 assumes the form 

6n/.~,a [(I + E)q + ‘/&“I = D' (a) (3.14) 

where for solid particles q = 1 and for drops and bubbles q depends on E as defined 

in (3.12). Multiplying both parts of (3.14) by the volume concentration p and using 

(3*13) we Obtain 6nww [(I + El9 + 1/2~21 = Q.‘~,, (aa2)a 

Expressing a in terms of p and then in terms of E, we obtain 

cm2 = E2 - iw ‘, w ’ = 0 / 0 0, 0 (J = Yg KS, vg = p. / d, 

With the use of these relationships, we obtain for E the equation 

(1 - VsP)k2 = io’ + 9/2P (1 + E>cr (3.15) 

For solid particles (3.15) is a quadratic equation in g whose solution is of the form 

g = 3/s (2-3p)-l (3~ + 18~ - 3p2 + B/9i (2-3~)~ ‘Y/z} (3.16) 

and completely defined the quantities (3.10) and (3.11). For 61’ = 0 we have the 
known result PI. 

For a liquid or gaseous particle Eq. (3.15) derived from (3.12) is a cubic equation 
and, as can readily be shown, has a unique root with q as its positive real part. It can, 
also, be shown that for o ’ = 0 this root is always smaller than the value of E for solid 

particles, as defined by formula (3.16). In the particular case of o ’ --f 0 from (3.15) 
we obtain 

p =, 9P (2 +3x1 (1 + El 
!2-3p 4+3+3x 

(3.17) 

When, on the other hand, o ’ --f 00 the liquid and gaseous particles begin to behave 
(as regards their interaction with the stream) as solid particles, and this statement is 

the more accurate the greater are x and h = d, / d,. 
For x-+ 00 (i.e., for a steady flow of solid particle suspensions) from (3.12) we 

obtain for the moment the following expression: 

io’heE rot uo (0) 
Ra = 4nPc@3 15 (1-t E; + ‘/@) + iwh (I+ <) ’ 

h=$ 

In a steady flow M = 0: and a particle rotates with the angular velocity (see (3. lo)) 

We stress that this quantity depends not only on the curl of velocity of the unperturbed 
fluid flow at the point occupied by the particle center but, also, on E which, in turn 
depends to a great extent on particle concentration in the system and on physical para- 
meters of phases. This very important dependence is altogether omitted in the formu- 
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-1ation of equations of the phase moment of momentum conservation for a disperse 
system considered as a medium with inner rotation. 

We note in conclusion that the proposed method of analysis of flows of soft disperse 

systems makes it possible to effect further averaging over the system volume with the 

view of obtaining a closed system of equations for “macroscopic” parameters which de- 
fine the average motion of phases, as interpenetrating and interacting continuous media 

(see the derivation and discussion of modified Darcy equations in [8]). 
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